- 相關推薦
勾股定理反思
在當今社會生活中,我們需要很強的教學能力,反思過去,是為了以后。那么大家知道正規(guī)的反思怎么寫嗎?以下是小編為大家收集的勾股定理反思,僅供參考,歡迎大家閱讀。

勾股定理反思1
對于“勾股定理的應用”的反思和小結有以下幾個方面:
1、課前準備不充分:
基礎題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實質即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學生竟然不知道。其二是課件準備不充分,其中有一道例題的答案是跟著例題同時出現(xiàn)的,再去修改,又浪費了一點時間。其三,用面積法求直角三角形的高,我認為是一個非常簡單的數(shù)學問題,但在實際教學中,發(fā)現(xiàn)很多學生仍然很難理解,說明我在備課時備學生不充分,沒有站在學生的角度去考慮問題。
2、課堂上的語言應該簡練。這是我上課的最大弱點,我不敢放手讓學生去獨立思考問題,會去重復題目意思,實際上不需要的,可以留時間讓學生去獨立思考。教師是無法代替學生自己的思考的.,更不能代替幾十個有差異的學生的思維。課堂上老師放一放,學生得到的更多,老師放多少,學生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門藝術,我要好好向老教師學習!
3、鼓勵學生的藝術。教師要鼓勵學生嘗試并尊重他們不完善的甚至錯誤的意見,經常鼓勵他們大膽說出自己的想法,大膽發(fā)表自己的見解,真正體現(xiàn)出學生是數(shù)學學習的主人。
4、啟發(fā)學生的技巧有待提高。啟發(fā)學生也是一門藝術,我的課堂上有點啟而不發(fā)。課堂上應該多了解學生。
勾股定理反思2
星期四下午講了《勾股定理逆定理》第一課時,現(xiàn)對本節(jié)課反思如下:
。1)這節(jié)課的設計思路比較合理:著重體現(xiàn)“探究”這一主題,從“古埃及人得到直角三角形的方法”到學生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆定理”,而對互逆命題,原命題,逆命題等概念的講解只是作為新課引入的命題點化了一下,沒有詳細講解、把這節(jié)課的重點放在了如何讓學生通過三角形三邊關系判斷是否是直角三角形?在經過課堂練習及課堂檢測來強化學生對勾股定理逆定理的`理解,分別從三角形的邊和角這方面來引導學生。
。2)本課PPT的使用是想凸顯“特征讓學生觀察,思路讓學生探索,方法讓學生思考,意義讓學生概括,結論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路,每個環(huán)節(jié)都是緊密相接的。
。3)課堂教學環(huán)節(jié)和教學效果我感覺很滿意,學生在對問題的回答很積極,在突破難點的過程中,學生通過小組合作實驗交流,自己總結歸納勾股定理逆定理,及證明中我給與學生充分的思考時間讓學生自己完成。整個過程中體現(xiàn)了以學生為主,老師為主導的作用,課堂氣氛活躍,效果挺好。
本節(jié)課的不足之處及改進方法:
1、本節(jié)課我沒有及時發(fā)現(xiàn)學生的錯誤。在學生上黑板做題時出現(xiàn)的錯誤沒能及時發(fā)現(xiàn)及改正。
2、課堂檢測做完后應讓學生自己講解,但時間不夠導致這一環(huán)節(jié)沒能讓學生完成,而是在投影對了答案。
在以后教學中,我會不斷地更新教育理念,結合學生的認知規(guī)律、生活經驗對數(shù)教材進行再創(chuàng)造,選取密切聯(lián)系學生現(xiàn)實生活和生動有趣的數(shù)學素材,為學生提供充分的數(shù)學活動和交流的空間,真正把創(chuàng)造還給學生,讓學生動起來,讓課堂煥發(fā)新的活力。
勾股定理反思3
時光稍縱即逝,轉眼間一個新的學期又要結束了,回顧已逝的教學時光,可謂百味俱全,其間有一節(jié)課我上得最投入、最值得回憶與反思。
記得那是期末的展示匯報課,(主任說可能會有校外的教師來聽課。)我當時很有壓力,晚上也難以入睡。我選的是《勾股定理》一課。為了上好這節(jié)課,我反復研究了去洋思學習的一些記錄,努力用新理念新手段來打造我的這節(jié)課。當我滿懷信心地上完這節(jié)課時,我心情愉悅,因為我教態(tài)自然得體,與學生合作默契,基本上獲得了教學的成功。
1、從生活出發(fā)的教學讓學生感受到學習的快樂
在“勾股定理”這節(jié)課中,一開始引入情景:
平平湖水清可鑒,荷花半尺出水面。
忽來一陣狂風急,吹倒荷花水中偃。
湖面之上不復見,入秋漁翁始發(fā)現(xiàn)。
花離根二尺遠,試問水深尺若干。
知識回味:復習勾股定理及它的公式變形,然后是幾組簡單的計算。
2、走進生活:以裝修房子為主線,設計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應用的'典型例題。
3、名題欣賞:首尾呼應,用“代數(shù)方法”解決“幾何問題”。印度數(shù)學家婆什迦羅(1141—1225年)提出的“荷花問題”比我國的“引葭赴岸”問題晚了一千多年!耙绺鞍丁眴栴},是我國數(shù)學經典著作《九章算術》中的一道名題。《九章算術》約成書于公元一世紀。該書的第九章,即勾股章,詳細討論了用勾股定理解決應用問題的方法。這一章的第6題,就是“引葭赴岸”問題,題目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問水深、葭長各幾何?” “荷花問題”的解法與“引葭赴岸”問題一樣。它的出現(xiàn)卻足以證明,舉世公認的古典數(shù)學名著《九章算術》傳入了印度!毒耪滤阈g》中的勾股定理應用方面的內容,涉及范圍之廣,解法之精巧,都是在世界上遙遙領先的,為推動世界數(shù)學的發(fā)展作出了貢獻。鼓勵學生可以自己利用課余時間查閱相關資料,豐富知識。
4、在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。并且將問題用動畫的形式展現(xiàn)出來,不僅將問題形象化,又提高了學生的學習興趣。同時將實際的問題轉化為數(shù)學問題的過程用直觀的圖形表示,在降低難度的同時又鼓勵了學生能夠看到身邊的數(shù)學,從而做到學以致用。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生之間的合作。
5、最后介紹了勾股定理的歷史,并且推薦了一些網站,讓學生下課之后進行查閱、了解。這是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
通過本節(jié)課的教學,學生在勾股定理的學習中能感受“數(shù)形結合”和“轉化”的數(shù)學思想,體會數(shù)學的應用價值和滲透數(shù)學思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術融入課堂,有利于創(chuàng)設教學環(huán)境,教學模式將從以教師講授為主轉為以學生動腦動手自主研究、小組學習討論交流為主,把數(shù)學課堂轉為“數(shù)學實驗室”,學生通過自己的活動得出結論、使創(chuàng)新精神與實踐能力得到了發(fā)展。不足之處:學生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規(guī)范。
勾股定理反思4
本節(jié)課根據(jù)學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的體會到了,不是所有三角形三邊都有a2+ b2= c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現(xiàn),達到了再次點燃學生學習熱情的目的,一舉多得。
除了探究出勾股定理的內容以外,本節(jié)課還適時地向學生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生愛國熱情,培養(yǎng)學生的民族自豪感和探索創(chuàng)新的精神。
練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用。
讓學生總結本堂課的收獲,從內容,到數(shù)學思想方法,到獲取知識的途徑等方面。給學生自由的空間,鼓勵學生多說。這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統(tǒng)化,提高學生素質,鍛煉學生的`綜合及表達能力。
作業(yè)為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野。
通過這節(jié)課,備課、上課后,我個人還有一些困惑,一是問題情境的創(chuàng)設(放片子),原本的意圖是激發(fā)學生的學習興趣,可是感覺學生反映平平。創(chuàng)設什么樣的問題情景更合適?
二是:探究問題的設計(放片子),本節(jié)課是一節(jié)典型的探究課,如何設計探究問題,才能使學生在探究過程中數(shù)學學習能力得到提高,教學任務順利完成并達到預期效果?
勾股定理反思5
首先,激發(fā)了學生學習數(shù)學的興趣。
一直以來,數(shù)學作為一門主要學科,在各階段考試中都占有重要的地位,而且數(shù)學也是自然科學的基礎學科,因此學生學習的好與壞,即直接影響的最終成績,也對其他理科的學習有一定的影響。目前,人們獲得數(shù)學知識的場所主要在數(shù)學課堂,而在中學大多數(shù)課堂教學的模式是“教師講、學生聽”的傳統(tǒng)教學,教師處于主動地位,學生被動接收知識。教師上課前認真?zhèn)湔n,想方設法讓學生把問題想清楚。學生課堂上可以走神,對教師講的問題可認真想,也可不去想,反正最后老師要給出答案的。于是出現(xiàn)了這樣一種情況:數(shù)學家在“做”數(shù)學,數(shù)學教師在“講”數(shù)學,而學生在“聽”數(shù)學。然而數(shù)學光靠聽,當然學生也就漸漸失去了學習數(shù)學的興趣。都說興趣是最好的老師,可是傳統(tǒng)的數(shù)學教學本身就具有抽象性,光靠講,很難不去乏味。在多媒體的教學環(huán)境下,教學信息的呈現(xiàn)方式是立體、豐富且生動有趣的,學生對于如此眾多的信息呈現(xiàn)形式,表現(xiàn)出的是強烈的興趣,真正做到了全方位地調動學生的多種感官參與學習,使抽象的內容變得更具體、易懂,更有利于激發(fā)學習興趣,極大提高學生的參與度。多媒體可以產生一種新的圖文并茂、豐富多彩的人機對話方式,而且可以立即對學習的內容掌握情況進行反饋。在這種交互式學習環(huán)境中,老師的`作用和地位主要表現(xiàn)在培養(yǎng)學生掌握信息處理工具的方法和分析問題、解決問題的能力上。
其次,運用多媒體可以優(yōu)化教學設計,有利于呈現(xiàn)過程。
傳統(tǒng)的數(shù)學教學,僅借助一塊黑板,一支粉筆、一本書、一張嘴,如此一節(jié)課下來,不僅教師累得夠嗆,學生也不輕松,易產生疲勞感甚至厭煩情緒,使得課堂教學信息傳遞結構效率較低。而通過多媒體教學,可以為教學提供強大的情景資源,能展示知識發(fā)生的過程,注重學生思維能力的培養(yǎng),多媒體課件采用動態(tài)圖像演示,具有較強的刺激作用,有助于理解概念的本質特征,促進學生在原有的認知基礎上,形成新的認知結構。例如這次上課,我制作了幾何畫板動畫,學生可以自己通過變化圖形,得到直角三角形三邊的關系,這要比直接上課舉例證明更生動,印象更深刻,也更具有說服性。
最后,多媒體教學也有助于提高教師的業(yè)務水平和計算機使用能力。
教師要上好一節(jié)數(shù)學課,必須要認真的備課,需要查閱大量的資料,獲取很多信息,去優(yōu)化教學效果。龐大的書庫也只有有限的資源,況且還要找,要去翻。而網絡為教師提供了無窮無盡的教學資源,為廣大教師開展教學活動開辟了一條捷徑,大大節(jié)省了教師的備課時間。我們可以在網上下載到很多有助于自己教學的資料,包括教學課件和試卷等。通過網絡,我們還可以學習到先進的教學思想、教學理念、教學方法。經常將多媒體信息技術運用到課堂教學的教師,他的教學方法應該總能走到前列。而且在教學中使用多媒體,要求教師有相當?shù)挠嬎銠C使用能力,也是對我們現(xiàn)代年輕教師個人文化素質提高的鍛煉。
當然,網絡在上課時,也有一些不方便之處需要去解決。例如數(shù)學講究敘理過程的書寫。但是學生的打字輸入技能還不能滿足,因此網絡課的習題都是以填空或者選擇為主,書寫的鍛煉還是要靠紙幣去完成?墒牵略谌藶,任何事情都是可以解決的。我想在科技發(fā)展迅速的今天,很快就有新技術去解決這些問題。作為年輕教師,我們要敢于挑戰(zhàn)和嘗試,在教學中學習,不斷提高自身的業(yè)務水平。
勾股定理反思6
本節(jié)課主要通過勾股定理的證明探索,使學生進一步理解和掌握勾股定理。通過利用質疑、拼圖觀察、思考、猜想、推理論證這一過程,培養(yǎng)學生探求未知數(shù)學知識的能力和方法,培養(yǎng)學生求異思維能力、認知能力、觀察能力和獨立實踐能力。學生獨立或分組進行拼圖實驗,教師組織學生在實驗過程中發(fā)現(xiàn)的有價值的實驗結果進行交流和展示。本節(jié)課的過程由激趣、質疑、實驗、求異、探索、交流、延伸組成。
本節(jié)課的成功之處:
1、創(chuàng)設情景,實例導入,激發(fā)學生的學習熱情。
2、由于實現(xiàn)了教師角色的轉變,教法的創(chuàng)新,師生的平等,氣氛的活躍,學生積極參加。
3、面向全體學生,以人為本的教育理念落實到位。整節(jié)課都是學生自主實驗、自主探索,自主完成由形到數(shù)的轉化。學生勇于上講臺展示研究成果,教師只是起到組織、引導作用。
4、通過學生動手實驗,上臺發(fā)言,展示成果,體驗了成功的喜悅。學生的自信心得到培養(yǎng),個性得到張揚。通過當場展示,讓學生體會到動手實踐在解決數(shù)學問題中的重要性,同時也讓學生體會到用面積來驗證公式的直觀性、普遍性。
5、學生的研究成果極大地豐富了學生對勾股定理的證明的認識,學生從中獲得利用已知的知識探求數(shù)學知識的能力和方法。這對學生今后的學習和將來的發(fā)展是大有裨益的。同時驗證勾股定理的證明的探究,使學生形成一種等積代換的思想,為今后的學習奠定基礎。
本節(jié)課的不足之處及改進思路:
1、小部分能力基礎和能力都比較差的學生在探索過程中無所事事,因此教師應該在課前對不同層次的學生提出不同的.要求,讓每個學生多清楚地知道這節(jié)課自己的任務是什么。
2、本節(jié)課拼圖驗證的方法是以前學生很少接觸的,所以在探索過程中很多學生都顯得有些吃力。所以教師在講方法一時,應該先介紹這種證明方法以及思路,讓學生模仿第一種方法的基礎上,能輕松地總結出第二種方法,從而產生去探索更多方法的興趣和動力,有利于學生的數(shù)學思維的提升。
3、對學生的人文教育和愛國教育不夠。很多學生在探索過程中遇到困難時,選擇放棄或等別人的答案。教師此時應該注意引導學生要勇于克服困難,主動進行探索,提高了自身的推理能力和創(chuàng)新精神。同時教師也要不斷滲透愛國教育,培養(yǎng)學生的民族自豪感和愛國熱情。
在我們的數(shù)學教學中,活動課是不可忽視的內容。在這個探索的過程中,學生絕大多數(shù)是不會創(chuàng)造或發(fā)明什么的,這是一個素質的表現(xiàn)和培養(yǎng)過程。學生得到什么結果是次要的,重要的是使學生的素質和能力得到培養(yǎng)。這是中學數(shù)學活動課的價值取向。
勾股定理反思7
我用了4課時講授了八年級下冊數(shù)學人教版的第十八章第一節(jié)勾股定理:
第一課時我主要講授的是勾股定理的探究和驗證,并舉例計算有關直角三角形已知兩邊長求第三邊的問題;
第二課時我主要講授了各種類型的有關直角三角形邊長或者面積相關問題;
第三課時講授了如何用勾股定理解決生活中的實際問題;
第四課時主要講授了怎樣在數(shù)軸上找出無理數(shù)對應的點。
這4個課時我采用的教學方法是:引導—探究—發(fā)現(xiàn)法;為學生設計的學習方法是:自主探究與合作交流相結合。
第一課時的課堂教學中,我始終注意了調動學生的積極性。
興趣是最好的老師,所以無論是引入、拼圖,還是歷史回顧,我都注意去調動學生,讓學生滿懷激情地投入到活動中。因此,課堂效率較高。勾股定理作為“千古第一定理”,其魅力在于其歷史價值和應用價值,因此我注意充分挖掘了其內涵。特別是讓學生事先進行調查,再在課堂上進行展示,這極大地調動了學生,既加深了對勾股定理文化的理解,又培養(yǎng)了他們收集、整理資料的能力。勾股定理的驗證既是本節(jié)課的重點,也是本節(jié)課的難點,為了突破這一難點,我設計了拼圖活動,并自制精巧的課件讓學生從形上感知,再層層設問,從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點。
第二課時我依據(jù)“學生是學習的主體”這一理念,
在探索勾股定理的整個過程中,本節(jié)課始終采用學生自主探索和與同伴合作交流相結合的方式進行主動學習。教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點。為了讓學生在學習過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設激發(fā)興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關系,進而得到勾股定理.
第三課時在課堂教學中,始終注重學生的.自主探究。
由實例引入,激發(fā)了學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高,切實體現(xiàn)了學生是數(shù)學學習的主人的新課程理念。對于拼圖驗證,學生還沒有接觸過,所以,教學中,教師給予了學生適當?shù)闹笇c鼓勵,教師較好地充當了學生數(shù)學學習的組織者、引導者、合作者。另外教會學生思維,培養(yǎng)學生多種能力。課前查資料,培養(yǎng)了學生的自學能力及歸類總結能力;課上的探究培養(yǎng)了學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力……但本節(jié)課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。因此,在今后的教學中還需要進一步關注學生的實驗操作活動,提高其實踐能力。
第四課時我另外向學生介紹了勾股定理的證明方法:
以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數(shù)式之間的恒等關系;以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明;以劉徽的“青朱出入圖”為代表,“無字證明”。
總的來看,學生掌握的情況比較好,都能夠達到預期要求,但介于有關勾股定理的類型題很多,不能一一為學生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。
勾股定理反思8
勾股定理的探索和證明蘊含豐富的數(shù)學思想和研究方法,是培養(yǎng)學生思維品質的載體。它對數(shù)學發(fā)展具有重要作用。勾股定理是一壇陳年佳釀,品之芬芳,余味無窮,以簡潔優(yōu)美的形式,豐富深刻的內涵刻畫了自然界和諧統(tǒng)一關系,是數(shù)形結合的優(yōu)美典范。
教學中我以教師為主導,以學生為主體,以知識為載體,以培養(yǎng)能力為重點。為學生創(chuàng)設“做數(shù)學、玩數(shù)學”的教學情境,讓學生從“學會”到“會學”,從“會學”到“樂學”。
1、查資料
我讓學生課前查閱有關勾股定理資料,學生對勾股定理歷史背景有初步了解,學生充滿自信迎接新知識《勾股定理》學習的挑戰(zhàn)。
學生查得資料:世界許多科學家尋找“外星人”。1820年,德國數(shù)學家高斯提出,在西伯利亞森林伐出直角三角形空地,在空地種上麥子,以三角形三邊為邊種上三片正方形松樹林,如果有外星人路過地球附近,看到這個巨大數(shù)學圖形,便知道:這個星球上有智慧生命。我國數(shù)學家華羅庚提出:要溝通兩個不同星球的信息交往,最好利用太空飛船帶上這個圖形,并發(fā)射到太空中去。
2、講故事
畢達哥拉斯是古希臘數(shù)學家。相傳2500年前,畢達哥拉斯在朋友家做客,發(fā)現(xiàn)朋友家用地磚鋪成地面反映了直角三角形三邊的數(shù)量關系。
我講畢達哥拉斯故事,提出問題。學生獨立思考,提出猜想。我配合演示,使問題形象、具體。教學活動從“數(shù)小方格”開始,起點低、趣味性濃。學生在偉人故事中進行數(shù)學問題的討論和探索。平淡無奇現(xiàn)象中隱藏深刻道理。
3、提問題
“問題是思維的起點”,一段生動有趣的動畫,點燃學生求知欲,以景激情,以情激思,引領學生進入學習情境,學生帶著問題進課堂。
例如:一架長為10m的梯子AB斜靠在墻上,若梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑2m ,那么它的底端是否也滑動2m ?
盡管學生講的不完全正確,但培養(yǎng)了學生運用數(shù)學語言進行抽象、概括的能力,學生經歷了應用勾股定理解決問題的思考過程,學生增長了知識,學生增長了智慧。
例如:《九章算術》記載有趣問題:有一個水池,水面是邊長為10尺的正方形,在水池的中央有一根新生蘆葦,它高出水面1尺,若把這根蘆葦拉向岸邊,它的.頂端恰好到達岸邊的水面,問這個水池深度和這根蘆葦長度各是多少?
我通過“著名問題”探究,讓學生了解勾股定理的古老與神奇。問題本身具有極大挑戰(zhàn)性,激發(fā)了學生強烈求知欲,激發(fā)了學生探究知識的愿望。學生討論交流,發(fā)現(xiàn)用代數(shù)觀點證明幾何問題的思路。我配以演示,分散了難點,培養(yǎng)了學生發(fā)散思維、探究數(shù)學問題的能力。
4、講證法
我拋磚引玉介紹趙爽弦圖,趙爽用幾何圖形截、割、拼、補證明代數(shù)恒等關系,具有嚴密性,直觀性,是中國古代以形證數(shù)、形數(shù)統(tǒng)一的典范。趙爽指出:四個全等直角三角形拼成一個中空的正方形,大正方形面積等于小正方形面積與4個三角形面積和。 “趙爽弦圖”表現(xiàn)了我國古代人對數(shù)學的鉆研精神和聰明才智,它是我國數(shù)學的驕傲。這個圖案被選為20xx年北京召開的國際數(shù)學家大會會徽。
隨后展示了美國總統(tǒng)證法。1876年4月1日,美國伽菲爾德在《新英格蘭教育日志》發(fā)表勾股定理的證法。1881年,伽菲爾德就任美國總統(tǒng),為了紀念他直觀、簡捷、易懂、明了的證明,這一證法被稱為“總統(tǒng)”證法。
我感覺學生是小小發(fā)明家。學生在建構知識的同時,欣賞作品享受成功的喜悅。
5、巧設計
練習設計我立足鞏固,著眼發(fā)展,兼顧差異,滿足學生渴望發(fā)展要求。練習有基礎訓練,變式訓練,中考試題,引出勾股樹,學生驚嘆奇妙的數(shù)學美。課內知識向課外知識延伸,打開了學生思路,給學生提供了廣闊空間。數(shù)學教學變得生機勃勃,學生喜歡數(shù)學,熱愛數(shù)學。
我讓學生講解搜集資料,豐富了學生背景知識,體現(xiàn)了自主學習方式。我對學生進行愛國主義教育,激發(fā)了學生民族自豪感和奮發(fā)向上學習精神。我讓學生欣賞豐富多彩的數(shù)學文化,展示五彩斑斕的文化背景,激發(fā)了學生的愛國熱情。
6、善總結
課堂小結是對教學內容的回顧,是對數(shù)學思想、方法的總結。我強調重點內容,注重知識體系的形成,培養(yǎng)了學生反思習慣。
我還想對同學們說:
牛頓——從蘋果落地最終確立了萬有引力定律
我們——從朝夕相處的三角板發(fā)現(xiàn)了勾股定理
雖然兩者尚不可同日而語
但探索和發(fā)現(xiàn)——終有價值
也許就在身邊
也許就在眼前
還隱藏著無窮的“萬有引力定律”和“勾股定理”……
祝愿同學們——
修得一個用數(shù)學思維思考世界的頭腦
練就一雙用數(shù)學視角觀察世界的眼睛
開啟新的探索——
發(fā)現(xiàn)平凡中的不平凡之謎……
勾股定理反思9
勾股定理的探索和證明蘊含著豐富的數(shù)學思想和數(shù)學方法,是培養(yǎng)學生良好思維品質的最佳載體。它以簡潔優(yōu)美的圖形結構,豐富深刻的內涵刻畫了自然界的和諧統(tǒng)一的關系,是數(shù)形結合的完美典范。著名數(shù)學家華羅庚就曾提出把“數(shù)形關系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言。為讓學生通過對這節(jié)課的學習得到更好的歷練,在教學時,特別注重從以下幾個方面入手:
一、注重知識的自然生發(fā)。
傳統(tǒng)的教學中,教師往往喜歡壓縮理論傳授過程,用充足的時間做練習,以題代講,搞題海戰(zhàn)術。但從學生的發(fā)展來著,如果壓縮數(shù)學知識的形成過程,不講究知識的自然生發(fā),學生獲取知識的過程是被動的,形成的體系也是孤立的,長此以往,學生必將錯過或失去思維發(fā)展和能力提高的機遇。在這節(jié)課上,不刻意追求所謂的進度,更沒有直接給出勾股定理,而是組織學生開展畫一畫、看一看、想一想、猜一猜、拼一拼的活動,學生在活動思考、交流、展示中,逐漸的形成了對知識的自我認識和自我感悟。這樣做不僅能幫助學生牢固掌握勾股定理,更重要的是使學生體會用自己所學的舊知識而獲取新知識過程,使他們獲得成功的喜悅,增強了學生主動性,同時他們的思維能力在知識自然形成的過程中不斷發(fā)展。
二、注重數(shù)學課上的操作性學習
操作性學習是自主探究性學習有效途徑之一,學生通過在實踐活動中的感受和體驗,有利于幫助學生理解和掌握抽象的數(shù)學知識。在這節(jié)課上,首先讓學生動手畫直角三角形,得出研究題材,然后又讓學生利用四個直角三角形拼一拼,驗證猜想。這樣充分的調動了學生的手、口、腦等多種感官參與數(shù)學學習活動,既享受了操作的樂趣,又培養(yǎng)了學生的動手能力,加深了對知識的理解。
三、注重問題設計的開放性
課堂教學是教師組織、引導、參與和學生自主、合作、探究學習的雙邊活動。這其中教師的“引導”起著關鍵作用。這里的“引導”,很大程度上靠設疑提問來實現(xiàn)。在教學實踐中,問題設計要具有開放性。因為開放性問題更有利于培養(yǎng)學生的創(chuàng)造性思維、體現(xiàn)學生的主體意識和個性差異。本節(jié)課在設計涂鴉直角三角形時,安排學生在方格紙上任意涂鴉一個直角三角形;在設計拼圖驗證環(huán)節(jié)時,安排學生任意拼出一個正方形或直角梯形,有意沒指定畫一個具體邊長的直角三角形和正方形,就是不想對學生的思維給出太多的限制條件,給出更多的'想象和創(chuàng)造空間。雖然探究的時間會更長,但這更符合實際知識的產生環(huán)境,學生只有在這樣的環(huán)境下進行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會得到更有效的歷練。
四、注重讓學生經歷完整的數(shù)學知識的發(fā)現(xiàn)過程。
新《數(shù)學課程標準》在關于課程目標的闡述中,首次大量使用了"經歷(感受)、體驗(體會)、探索"等刻畫數(shù)學活動水平的過程性目標動詞,就是要求在數(shù)學學習的過程中,讓學生經歷知識與技能形成與鞏固過程,經歷數(shù)學思維的發(fā)展過程,經歷應用數(shù)學能力解決問題的過程,從而形成積極的數(shù)學情感與態(tài)度。教學從學生感興趣的涂鴉開始,再經歷觀察、分析、猜想、驗證的全過程,讓學生充分的經歷了完整的數(shù)學知識的發(fā)現(xiàn)過程,使學生獲得對數(shù)學理解的同時,在知識技能、思維能力以及情感態(tài)度等多方面都得到了進步和發(fā)展。
如果有機會再上這節(jié)課,我想我會投入更多的精力對學生可能會給出的答案進行預想,以便在課堂上給予學生更多的啟迪,讓他們走的更遠。一堂課,雖已結束,但對于生命課堂的領悟這條路,還有很長的路要走,我將繼續(xù)上下求索,做學生更好的支點。
勾股定理反思10
新課程改革要求我們:將數(shù)學教學置身于學生自主探究與合作交流的數(shù)學活動中;將知識的獲取與能力的培養(yǎng)置身于學生形式各異的探索經歷中;關注學生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識。為學生的終身學習及可持續(xù)發(fā)展奠定堅實的基礎。
為此我在教學設計中注重了以下幾點:
一、讓學生主動想學
上這節(jié)課前一個星期教師布置給學生任務:查有關勾股定理的資料(可上網查,也可查閱報刊、書籍)。提前兩三天由幾位學生匯總(教師可適當指導)。這樣可使學生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學生認識到勾股定理的重要性,學習勾股定理是非常必要的,激發(fā)學生的學習興趣,對學生也是一次愛國主義教育,培養(yǎng)民族自豪感,激勵他們奮發(fā)向上。同時培養(yǎng)學生的自學能力及歸類總結能力。
二、在課堂教學中,始終注重學生的自主探究
首先,創(chuàng)設情境,由實例引入,激發(fā)學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高。體現(xiàn)了學生是數(shù)學學習的主人,人人學有價值的`數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展。
對于拼圖驗證,學生還沒有接觸過,所以在教學中教師給予學生適當指導與鼓勵。充分體現(xiàn)了教師是學生數(shù)學學習的組織者、引導者、合作者。
三、教會學生思維,培養(yǎng)學生多種能力
課前查資料,培養(yǎng)學生的自學能力及歸類總結能力;課上的探究培養(yǎng)學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力……
四、注重了數(shù)學應用意識的培養(yǎng)
數(shù)學來源于實踐,而又應用于實踐。因此從實例引入,最后通過定理解決引例中的問題,并在定理的應用中,讓學生舉生活中的例子,充分體現(xiàn)了數(shù)學的應用價值。
整節(jié)課都是在生生互動、師生互動的和諧氣氛中進行的,在教師的鼓勵、引導下學生進行了自主學習。學生上講臺表達自己的思路、解法,體驗了數(shù)形結合的數(shù)學思想方法,培養(yǎng)了細心觀察、認真思考的態(tài)度。但本節(jié)課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。另在舉勾股定理在生活中的例子時,學生思路不夠開闊。以后要多培養(yǎng)學生實驗操作能力及應用拓展能力,使學生思路更開闊。
勾股定理反思11
新課程改革要求我們:將數(shù)學教學置身于學生自主探究與合作交流的數(shù)學活動中,將知識的獲取與能力的培養(yǎng)置身于學生形式各異的探索經歷中,關注學生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識,為學生的終身學習及可持續(xù)發(fā)展奠定堅實的基礎。
首先講解勾股定理的重要性,讓學生明白勾股定理是中學數(shù)學幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關系,既是直角三角形性質的拓展,也是后續(xù)學習“解直角三角形”的基礎。它緊密聯(lián)系了數(shù)學中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉化成數(shù)量關系(三邊之間滿足a2+ b2= c2)堪稱數(shù)形結合的典范,在理論上占有重要地位,從而激發(fā)學生的求知欲。
一、精心編制數(shù)學教學目標知識與技能:1.讓學生在經歷探索定理的過程中,理解并掌握勾股定理的內容;2.掌握勾股定理的證明及介紹相關史料;3.學生能對勾股定理進行簡單計算。
過程與方法:在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數(shù)學思想,發(fā)展合情推理能力,并體會數(shù)形結合和特殊到一般的思想方法。
情感態(tài)度與價值觀:體會數(shù)學文化的價值,通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感,激發(fā)學生發(fā)奮學習。
二、優(yōu)化數(shù)學教學內容的呈現(xiàn)方式(一)創(chuàng)設問題情境,引導學生思考,激發(fā)學習興趣。
1.2002年國際數(shù)學家大會在北京舉行的意義。
2.電腦顯示:ICM20xx會標。
3. 會標設計與趙爽弦圖。
4. 趙爽弦圖與《周髀算經》中的“商高問題”。
。ǘ┩ㄟ^學生動手操作,觀察分析,實踐猜想,合作交流,人人參與活動,體驗并感悟“圖形”和“數(shù)量”之間的相互聯(lián)系。
1.觀察網格上的圖形:分別以直角三角形的三邊向外作正方形,三個正方形的面積關系。再利用幾何畫板演示,引導學生去觀察,大膽的猜測。
2.引導學生將正方形的面積與三角形的邊長聯(lián)系起來,讓學生進行分析、歸納,鼓勵學生用用語言表達自己的發(fā)現(xiàn)。采取“個人思考——小組活動——全班交流”的形式。
3.讓學生自己任畫一個直角三角形,再次驗證自己的發(fā)現(xiàn),在此基礎上得到直角三角形三邊的關系。
4.電腦演示:銳角三角形、鈍角三角形三邊的平方關系,從而進一步認識直角三角形三邊的'關系。
5.通過幾個練習,了解直角三角形三邊關系的作用。
。ㄈ├^續(xù)動手操作實踐,思考探究,拼圖驗證猜想。
1.學生動手用準備好的四個直角三角形拼弦圖。
2.利用弦圖來驗證勾股定理。采取“個人思考——小組活動——全班交流”的形式。
。ㄋ模┩卣寡由欤l(fā)揮作為千古第一定理的文化價值。
1.簡單介紹勾股定理的文化價值。
2.閱讀:勾股定理成為地球人與“外星人”聯(lián)系的“使者”。
3.電腦演示:欣賞勾股樹。
4.推薦進一步課外學習的網址。
5.與課頭的“ICM20xx”在中國舉行的意義首尾呼應,進一步激發(fā)學生追求遠大目標,奮發(fā)學習。
本節(jié)課開始我利用了導語中的在北京召開的20xx年國際數(shù)學家大會的會標,其圖案為“弦圖”,激發(fā)學生的興趣。同時出示勾股定理的圖形,讓學生猜想直角三角形三邊之間的關系。然后利用正方形網格驗證猜想的正確性,還利用教具在黑板上拼圖,啟發(fā)學生用面積法得出a2+ b2= c2在講解勾股定理的結論時,為了讓學生更好地理解和掌握勾股定理的探索過程,先讓學生自己進行探索,然后同學進行討論,最后上臺演示。這樣可以加深學生的參與,也讓師生間、生生間有了互動。然后老師利用多種證法讓學生參與勾股定理的探索過程,讓學生自己感覺并最后體會到勾股定理的結論,使得這課的重難點輕易地突破,大大提高教學效率,培養(yǎng)了學生的解決問題的能力和創(chuàng)新能力。
勾股定理反思12
我用了4課時講授了八年級下冊數(shù)學人教版的第十八章第一節(jié)勾股定理,第一課時我主要講授的是勾股定理的探究和驗證,并舉例計算有關直角三角形已知兩邊長求第三邊的問題;第二課時我主要講授了各種類型的有關直角三角形邊長或者面積相關問題;第三課時講授了如何用勾股定理解決生活中的實際問題;第四課時主要講授了怎樣在數(shù)軸上找出無理數(shù)對應的點。這4個課時我采用的教學方法是:引導—探究—發(fā)現(xiàn)法;為學生設計的學習方法是:自主探究與合作交流相結合。
第一課時的課堂教學中,我始終注意了調動學生的積極性。興趣是最好的老師,所以無論是引入、拼圖,還是歷史回顧,我都注意去調動學生,讓學生滿懷激情地投入到活動中。因此,課堂效率較高。勾股定理作為“千古第一定理”,其魅力在于其歷史價值和應用價值,因此我注意充分挖掘了其內涵。特別是讓學生事先進行調查,再在課堂上進行展示,這極大地調動了學生,既加深了對勾股定理文化的理解,又培養(yǎng)了他們收集、整理資料的能力。勾股定理的驗證既是本節(jié)課的重點,也是本節(jié)課的難點,為了突破這一難點,我設計了拼圖活動,并自制精巧的課件讓學生從形上感知,再層層設問,從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點。
第二課時我依據(jù)“學生是學習的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學生自主探索和與同伴合作交流相結合的方式進行主動學習。教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點。為了讓學生在學習過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設激發(fā)興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關系,進而得到勾股定理。
第三課時在課堂教學中,始終注重學生的自主探究,由實例引入,激發(fā)了學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高,切實體現(xiàn)了學生是數(shù)學學習的'主人的新課程理念。對于拼圖驗證,學生還沒有接觸過,所以,教學中,教師給予了學生適當?shù)闹笇c鼓勵,教師較好地充當了學生數(shù)學學習的組織者、引導者、合作者。另外教會學生思維,培養(yǎng)學生多種能力。課前查資料,培養(yǎng)了學生的自學能力及歸類總結能力;課上的探究培養(yǎng)了學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力……但本節(jié)課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。因此,在今后的教學中還需要進一步關注學生的實驗操作活動,提高其實踐能力。
第四課時我另外向學生介紹了勾股定理的證明方法:以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數(shù)式之間的恒等關系;以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明;以劉徽的“青朱出入圖”為代表,“無字證明”。
總的來看,學生掌握的情況比較好,都能夠達到預期要求,但介于有關勾股定理的類型題很多,不能一一為學生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。
勾股定理反思13
勾股定理是數(shù)學中最重要的定理之一,它揭示了直角三角形中三條之間的數(shù)量關系,由勾股定理的證明能夠把直角三角形中“形”的特征轉化為“數(shù)”的關系,因此它可以解決直角三角形中的許多計算問題。勾股定理不僅體現(xiàn)出完美的“形數(shù)統(tǒng)一”思想,更因為其超過四百多種的證明方法,使其成為數(shù)學上最引人注目的定理之一。
對學生來說,用面積的“割補”證明一個定理應該是比較陌生的,尤其覺得不像證明,因此,勾股定理的證明是一個難點。但是,初二學生經過一年的幾何學習,已具有初步的觀察和邏輯推理能力,他們更希望獨立思考和發(fā)表自己的見解。因此,我創(chuàng)設一種便于學生觀察、思考、交流的教學情境,從生活實例和趙爽弦圖引入,共用了五張幻燈片三個生活實例,激發(fā)了學生學習興趣,培育他們學習的熱情。在本節(jié)課的教學中我做到了一下幾點:
一、從大量的生活實例和趙爽弦圖、歷史故事引入
通過欣賞20xx年在我國北京召開的國際數(shù)學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數(shù)學成就,引入課題。接下來,讓學生思考三個生活實例:啟發(fā)他們要想解決這些問題需要知道直角三角形三邊之間的關系,有通過講故事引起他們探究的熱情,故事內容是:相傳25xx年前,畢達格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關系。通過故事使學生明白:科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結合起來。
這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養(yǎng)。
二、在課堂教學中,始終注重學生的自主探究
首先,創(chuàng)設情境,由實例引入,激發(fā)學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高。體現(xiàn)了學生是數(shù)學學習的主人,人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展。對于拼圖驗證,學生還沒有接觸過,所以在教學中教師給予學生適當指導與鼓勵。充分體現(xiàn)了教師是學生數(shù)學學習的組織者、引導者、合作者。
三、教會學生思維,培養(yǎng)學生多種能力
課前查資料,培養(yǎng)學生的自學能力及歸類總結能力;課上的探究培養(yǎng)學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力……
四、信息技術與學科的整合
在信息社會,信息技術與課程的整合必將帶來教育者的深刻變化。我充分地利用多媒體教學,為學生創(chuàng)設了生動、直觀的現(xiàn)實情景,具有強列的吸引力,能激發(fā)學生的學習欲望。心理學專家研究表明:運動的圖形比靜止的圖形更能引起學生的注意力。在傳統(tǒng)教學中,用筆、尺和圓規(guī)在紙上或黑板上畫出的`圖形都是靜止圖形,同時圖形一旦畫出就被固定下來,也就是失去了一般性,所以其中的數(shù)學規(guī)律也被掩蓋了,呈現(xiàn)給學生的數(shù)學知識也只能停留在感性認識上。本節(jié)課我通過Flash動畫演示結果和拼圖程以及呈現(xiàn)教學內容。真正體現(xiàn)數(shù)學規(guī)律的應用價值。把呈現(xiàn)給學生的數(shù)學知識從感性認識提升到理性認識,實現(xiàn)一種質的飛躍。
五、注重了數(shù)學應用意識的培養(yǎng)
數(shù)學來源于實踐,而又應用于實踐。因此從實例引入,最后通過定理
解決引例中的問題,并在定理的應用中,讓學生舉生活中的例子,充分體現(xiàn)了數(shù)學的應用價值。
整節(jié)課都是在生生互動、師生互動的和諧氣氛中進行的,在教師的鼓勵、引導下學生進行了自主學習。學生上講臺表達自己的思路、解法,體驗了數(shù)形結合的數(shù)學思想方法,培養(yǎng)了細心觀察、認真思考的態(tài)度。但本節(jié)課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。另在舉勾股定理在生活中的例子時,學生思路不夠開闊。以后要多培養(yǎng)學生實驗操作能力及應用拓展能力,使學生思路更開闊。
勾股定理反思14
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數(shù)學著作《周髀算經》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學家研究幾何是為了實用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:
本節(jié)課的教學目標是:在掌握了勾股定理的基礎上,讓學生如何從三邊的關系來判定一個三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學設計說明:本教教學設計是圍繞勾股定理的逆定理的證明與應用來展開,結合新課標的要求,根據(jù)我班學生的認知結構與教材地位為了達到本節(jié)課的教學目標,我做了以下設計(也是成功之處):
一、創(chuàng)設情境,提出猜想達到直觀性的教學要求。讓幾個學生要全班同學前面做一個“數(shù)學實驗”,三條分別為:3,4,5的三角形是一個直角三角形。第二步驟是讓學生畫已知三邊的一定長度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關系條件,同時,引導學生從特殊到一般提出猜想。
二、將教學內容精簡化.考慮到我所教班級的學生認識水平,做了如下教學設計:⑴將教學目標定為讓學生掌握勾股定理的逆定理.以及逆定理的應用,而對于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進行講解.⑵對于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡單化.本節(jié)課也不詳細講.本節(jié)課的的重點放在掌握勾股定理的逆定理,及其應用.從課堂效果來看,這樣的教學設計是合理的,學生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。
三、應用訓練,鞏固新知為了鞏固新知,靈活運用所學知識解決相應問題,提高學生的分析解題能力,基于對我班的學情分析,為了讓學生都能動起手做,學案的設計上做了很多腳手架,目的就是讓學生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設置對我們的中下水平的學生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒有的話,這部分學生對一些基本的題都會束手無策.
四、實行分層教學,讓不同水平的學生在同一課堂都能學好,為此,我設計了三個層次的問題,以達到分層教學目標:第一層次是讓學生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調已知三角形三邊長或三邊關系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的.計算問題.根據(jù)學生原有的認知結構,讓學生更好地體會分割的思想.設計的題型前后呼應,使知識有序推進,有助于學生的理解和掌握;讓學生通過合作、交流、反思、感悟的過程,激發(fā)學生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學生是學習的主人.。將目標分層后,我設計的學案里的題目也是相應的進行了分層設計,滿足不同層次的學生的做題要求,達到鞏固課堂知識的目的。最后,布置作業(yè),也是分層布置的,分為三層,對應不同的學生,讓他們的作業(yè)都在他們的能力范圍。
誠然,這節(jié)課也存在許多不足第一、新課導入部分:存在如下值得改進的地方:①復習舊知部分,復習勾股定理的內容應用了填空的形式,這個形式不是最佳的.因為學生書寫勾股定理耗時,既使書寫出來,復習效果也不太好。最佳的應該是以簡單的題目形式來復習勾股定理.這樣快而有效;②如何從復習勾股定理中巧妙的切入本課的主題,過渡語的設置,應該將過渡語言簡單明了,可設計成:怎么從邊的關系來判斷一個三角形是直角三角形呢?這就是本節(jié)課要學習的內容.③導入部分的課時分配估計不足,顯得冗長,也一定程度上造成后面的教學時間緊張。應該對導入部分的時效再進行分析簡化。
第二存在的問題是:
。1)腳手架設計的太多,本節(jié)課有一定的腳手架是合適的,太多了,反而不利于學生自己的書寫規(guī)范性,過程的掌握等,
(2)練習題題量過大,本節(jié)課的練習題大部分都是重復一些基本的操作,沒有必要太多簡單的題目,可以適當去掉.對于數(shù)字的設計可以更加科學化一點,應該讓學生方便運算和節(jié)省時間.此外,對于層次較要的同學來說,應該設計更多一點綜合性的題目。適當?shù)脑黾右恍┨岣哳},以滿足這一層次的學生的學習練習要求.
在備每一節(jié)課中,對于課堂的每一個細節(jié),第一刻鐘,第一個教學設計的思考都無不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個過程是一種全新的收獲,也是全新的開始,讓自己能夠重新起步,向前。
勾股定理反思15
《勾股定理》一章檢測結果出來了,學生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉反側。
一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學直接根據(jù)勾股定理得:AB=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。
二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學可能是受勾股數(shù)“3,4,5”的影響,錯把結果寫成了3c,其實這里的第三邊是斜邊.
三是缺乏分類思想,考慮問題不全面,導致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結果應該有兩個,但好多同學都填了一個答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。
四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學認為此三角形不是直角三角形,其實這個三角形是以b為斜邊的直角三角形。
五是缺少方程思想和轉化思想,使綜合類試題痛失分數(shù)。
六是書寫不規(guī)范。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學寫出一句“由勾股定理得”的'不恰當?shù)臄⑹觥?/p>
針對上述問題,痛定思痛,感悟頗多:
第一,教學不可削弱技能的訓練。要學生真正掌握某個知識,如果缺少相應技能的訓練是不科學的。正如教人開車的教練把開車的要點、技巧講清楚,然后叫學車的學生馬上開車去考試一樣。試問:當教師在講臺上滔滔不絕地講解時,能否保證每一個學生都專心去聽?能否保證每一個專心去聽的學生都聽得明白?能否保證每一個聽得明白的學生都能解同一類題目?可見:“課堂上教師講,學生聽,聽就會懂,懂就會做。”只是教師一廂情愿的做法,教師只有不滿足于自己的“講清楚”,在課堂上幫助學生獨立完成,并進行一定量的訓練,才能實現(xiàn)教學的有效性。
第二,巧設錯誤案例,讓學生辨錯、糾錯,即學生對教師的有意“示錯”進行分析、判斷,提高防錯能力。在教學中,教師有時可恰到好處,有意地把估計學生易錯的做法顯示給學生,以引起學生的注意,然后通過師生共同分析錯因,加以糾錯,達到及時、有效預防,并避免學生出現(xiàn)類似錯誤的目的。這樣,可防患于未然,并提高學生分析、判斷、解決問題的能力。
第三,教學應注重數(shù)學思想和方法傳授。理解掌握各種數(shù)學思想和方法是形成數(shù)學技能技巧,提高數(shù)學能力的前提。 學生學習數(shù)學,學會是基礎,會學是目的,教是為了不教。教學中,在加強技能訓練的同時,要強化數(shù)學思想和數(shù)學方法的教學,做到講方法聯(lián)系思想,以思想指導方法,使二者相互交融,相得益彰。此外,在教學中培養(yǎng)學生的“問題意識”,激勵學生善于發(fā)現(xiàn)問題、思考問題,并能運用數(shù)學方法去解決廣泛的多種多樣的實際問題,以便增強學生探究新知識、新方法的創(chuàng)造能力。
第四,教學應加大綜合訓練的力度。目前的綜合題已經由單純的知識疊加型轉化為知識、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數(shù)學思想方法的運用以及創(chuàng)新意識等特點。教學時應抓好“三轉”能力的培養(yǎng):(1)語言轉換能力。每道數(shù)學綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強的語言轉換能力,能把普通語言轉換成數(shù)學語言。(2)概念轉換能力:綜合題的轉譯常常需要較強的數(shù)學概念的轉換能力。(3)數(shù)形轉換能力。解題中的數(shù)形結合,就是對題目的條件和結論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結合上找出解題思路。只有如此,方可找到解決綜合題的突破口。
第五,教學勿忘發(fā)揮板書的特有功能。板書通過學生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴謹?shù)慕獯疬^程的板演,不但便于學生理解、掌握知識,還會給學生起到示范作用。
相信通過反思教學,優(yōu)化方法,細化過程,一定能取得事半功倍之效。
【勾股定理反思】相關文章:
勾股定理評課稿12-11
反思與自我反思06-10
反思怎么寫?反思通用范文04-14
個人的反思03-02
初中的反思03-04
比的認識反思03-22
gkh反思02-29
比的化簡反思05-13
故鄉(xiāng)的反思05-18